编写一个动作服务器和客户端(C++)
目标: 在C++中实现一个动作服务器和客户端。
教程级别: 中级
时间: 15分钟
任务
1 创建 action_tutorials_cpp 包
正如我们在 创建软件包 教程中所看到的,我们需要创建一个新的包来保存我们的C++代码和支持代码。
1.1 创建 action_tutorials_cpp 包
进入你在 上一个教程 中创建的操作工作空间(记得要加载工作空间),并为C++操作服务器创建一个新包:
cd ~/ros2_ws/src
ros2 pkg create --dependencies action_tutorials_interfaces rclcpp rclcpp_action rclcpp_components -- action_tutorials_cpp
cd ~/ros2_ws/src
ros2 pkg create --dependencies action_tutorials_interfaces rclcpp rclcpp_action rclcpp_components -- action_tutorials_cpp
cd \dev\ros2_ws\src
ros2 pkg create --dependencies action_tutorials_interfaces rclcpp rclcpp_action rclcpp_components -- action_tutorials_cpp
1.2 添加可见性控制
为了使该包在Windows上编译和工作,我们需要添加一些"可见性控制"。更多详细信息,请参阅 Windows Tips and Tricks文档中的Windows符号可见性。
打开 action_tutorials_cpp/include/action_tutorials_cpp/visibility_control.h
,并添加以下代码:
#ifndef ACTION_TUTORIALS_CPP__VISIBILITY_CONTROL_H_
#define ACTION_TUTORIALS_CPP__VISIBILITY_CONTROL_H_
#ifdef __cplusplus
extern "C"
{
#endif
// This logic was borrowed (then namespaced) from the examples on the gcc wiki:
// https://gcc.gnu.org/wiki/Visibility
#if defined _WIN32 || defined __CYGWIN__
#ifdef __GNUC__
#define ACTION_TUTORIALS_CPP_EXPORT __attribute__ ((dllexport))
#define ACTION_TUTORIALS_CPP_IMPORT __attribute__ ((dllimport))
#else
#define ACTION_TUTORIALS_CPP_EXPORT __declspec(dllexport)
#define ACTION_TUTORIALS_CPP_IMPORT __declspec(dllimport)
#endif
#ifdef ACTION_TUTORIALS_CPP_BUILDING_DLL
#define ACTION_TUTORIALS_CPP_PUBLIC ACTION_TUTORIALS_CPP_EXPORT
#else
#define ACTION_TUTORIALS_CPP_PUBLIC ACTION_TUTORIALS_CPP_IMPORT
#endif
#define ACTION_TUTORIALS_CPP_PUBLIC_TYPE ACTION_TUTORIALS_CPP_PUBLIC
#define ACTION_TUTORIALS_CPP_LOCAL
#else
#define ACTION_TUTORIALS_CPP_EXPORT __attribute__ ((visibility("default")))
#define ACTION_TUTORIALS_CPP_IMPORT
#if __GNUC__ >= 4
#define ACTION_TUTORIALS_CPP_PUBLIC __attribute__ ((visibility("default")))
#define ACTION_TUTORIALS_CPP_LOCAL __attribute__ ((visibility("hidden")))
#else
#define ACTION_TUTORIALS_CPP_PUBLIC
#define ACTION_TUTORIALS_CPP_LOCAL
#endif
#define ACTION_TUTORIALS_CPP_PUBLIC_TYPE
#endif
#ifdef __cplusplus
}
#endif
#endif // ACTION_TUTORIALS_CPP__VISIBILITY_CONTROL_H_
2 编写一个操作服务器
让我们专注于编写一个使用我们在 创建一个动作 教程中创建的操作来计算斐波那契数列的操作服务器。
2.1 编写动作服务器代码
打开 action_tutorials_cpp/src/fibonacci_action_server.cpp
文件,并将以下代码放入其中:
#include <functional>
#include <memory>
#include <thread>
#include "action_tutorials_interfaces/action/fibonacci.hpp"
#include "rclcpp/rclcpp.hpp"
#include "rclcpp_action/rclcpp_action.hpp"
#include "rclcpp_components/register_node_macro.hpp"
#include "action_tutorials_cpp/visibility_control.h"
namespace action_tutorials_cpp
{
class FibonacciActionServer : public rclcpp::Node
{
public:
using Fibonacci = action_tutorials_interfaces::action::Fibonacci;
using GoalHandleFibonacci = rclcpp_action::ServerGoalHandle<Fibonacci>;
ACTION_TUTORIALS_CPP_PUBLIC
explicit FibonacciActionServer(const rclcpp::NodeOptions & options = rclcpp::NodeOptions())
: Node("fibonacci_action_server", options)
{
using namespace std::placeholders;
this->action_server_ = rclcpp_action::create_server<Fibonacci>(
this,
"fibonacci",
std::bind(&FibonacciActionServer::handle_goal, this, _1, _2),
std::bind(&FibonacciActionServer::handle_cancel, this, _1),
std::bind(&FibonacciActionServer::handle_accepted, this, _1));
}
private:
rclcpp_action::Server<Fibonacci>::SharedPtr action_server_;
rclcpp_action::GoalResponse handle_goal(
const rclcpp_action::GoalUUID & uuid,
std::shared_ptr<const Fibonacci::Goal> goal)
{
RCLCPP_INFO(this->get_logger(), "Received goal request with order %d", goal->order);
(void)uuid;
return rclcpp_action::GoalResponse::ACCEPT_AND_EXECUTE;
}
rclcpp_action::CancelResponse handle_cancel(
const std::shared_ptr<GoalHandleFibonacci> goal_handle)
{
RCLCPP_INFO(this->get_logger(), "Received request to cancel goal");
(void)goal_handle;
return rclcpp_action::CancelResponse::ACCEPT;
}
void handle_accepted(const std::shared_ptr<GoalHandleFibonacci> goal_handle)
{
using namespace std::placeholders;
// this needs to return quickly to avoid blocking the executor, so spin up a new thread
std::thread{std::bind(&FibonacciActionServer::execute, this, _1), goal_handle}.detach();
}
void execute(const std::shared_ptr<GoalHandleFibonacci> goal_handle)
{
RCLCPP_INFO(this->get_logger(), "Executing goal");
rclcpp::Rate loop_rate(1);
const auto goal = goal_handle->get_goal();
auto feedback = std::make_shared<Fibonacci::Feedback>();
auto & sequence = feedback->partial_sequence;
sequence.push_back(0);
sequence.push_back(1);
auto result = std::make_shared<Fibonacci::Result>();
for (int i = 1; (i < goal->order) && rclcpp::ok(); ++i) {
// Check if there is a cancel request
if (goal_handle->is_canceling()) {
result->sequence = sequence;
goal_handle->canceled(result);
RCLCPP_INFO(this->get_logger(), "Goal canceled");
return;
}
// Update sequence
sequence.push_back(sequence[i] + sequence[i - 1]);
// Publish feedback
goal_handle->publish_feedback(feedback);
RCLCPP_INFO(this->get_logger(), "Publish feedback");
loop_rate.sleep();
}
// Check if goal is done
if (rclcpp::ok()) {
result->sequence = sequence;
goal_handle->succeed(result);
RCLCPP_INFO(this->get_logger(), "Goal succeeded");
}
}
}; // class FibonacciActionServer
} // namespace action_tutorials_cpp
RCLCPP_COMPONENTS_REGISTER_NODE(action_tutorials_cpp::FibonacciActionServer)
前几行包含了我们编译所需的所有头文件。
接下来,我们创建一个派生自 rclcpp::Node
的类:
class FibonacciActionServer : public rclcpp::Node
FibonacciActionServer
类的构造函数将节点名称初始化为 fibonacci_action_server
:
explicit FibonacciActionServer(const rclcpp::NodeOptions & options = rclcpp::NodeOptions())
: Node("fibonacci_action_server", options)
构造函数还实例化了一个新的动作服务器:
this->action_server_ = rclcpp_action::create_server<Fibonacci>(
this,
"fibonacci",
std::bind(&FibonacciActionServer::handle_goal, this, _1, _2),
std::bind(&FibonacciActionServer::handle_cancel, this, _1),
std::bind(&FibonacciActionServer::handle_accepted, this, _1));
一个动作服务器需要6个要素:
模板化的动作类型名称:
Fibonacci
。要添加动作的ROS 2节点:
this
。动作名称:
'fibonacci'
。处理目标的回调函数:
handle_goal
。处理取消的回调函数:
handle_cancel
。处理目标接受的回调函数:
handle_accept
。
接下来是对各种回调函数的实现。请注意,所有回调函数都需要快速返回,否则我们可能会导致执行程序饥饿。
我们首先处理处理新目标的回调函数:
rclcpp_action::GoalResponse handle_goal(
const rclcpp_action::GoalUUID & uuid,
std::shared_ptr<const Fibonacci::Goal> goal)
{
RCLCPP_INFO(this->get_logger(), "Received goal request with order %d", goal->order);
(void)uuid;
return rclcpp_action::GoalResponse::ACCEPT_AND_EXECUTE;
}
这个实现只是接受所有目标。
接下来是处理取消的回调函数:
rclcpp_action::CancelResponse handle_cancel(
const std::shared_ptr<GoalHandleFibonacci> goal_handle)
{
RCLCPP_INFO(this->get_logger(), "Received request to cancel goal");
(void)goal_handle;
return rclcpp_action::CancelResponse::ACCEPT;
}
这个实现只是告诉客户端它接受了取消请求。
最后一个回调函数接受一个新的目标并开始处理它:
void handle_accepted(const std::shared_ptr<GoalHandleFibonacci> goal_handle)
{
using namespace std::placeholders;
// this needs to return quickly to avoid blocking the executor, so spin up a new thread
std::thread{std::bind(&FibonacciActionServer::execute, this, _1), goal_handle}.detach();
}
由于执行是一个长时间运行的操作,我们创建一个线程来执行实际的工作,并快速从``handle_accepted``返回。
所有进一步的处理和更新都在新线程的``execute``方法中进行:
void execute(const std::shared_ptr<GoalHandleFibonacci> goal_handle)
{
RCLCPP_INFO(this->get_logger(), "Executing goal");
rclcpp::Rate loop_rate(1);
const auto goal = goal_handle->get_goal();
auto feedback = std::make_shared<Fibonacci::Feedback>();
auto & sequence = feedback->partial_sequence;
sequence.push_back(0);
sequence.push_back(1);
auto result = std::make_shared<Fibonacci::Result>();
for (int i = 1; (i < goal->order) && rclcpp::ok(); ++i) {
// Check if there is a cancel request
if (goal_handle->is_canceling()) {
result->sequence = sequence;
goal_handle->canceled(result);
RCLCPP_INFO(this->get_logger(), "Goal canceled");
return;
}
// Update sequence
sequence.push_back(sequence[i] + sequence[i - 1]);
// Publish feedback
goal_handle->publish_feedback(feedback);
RCLCPP_INFO(this->get_logger(), "Publish feedback");
loop_rate.sleep();
}
// Check if goal is done
if (rclcpp::ok()) {
result->sequence = sequence;
goal_handle->succeed(result);
RCLCPP_INFO(this->get_logger(), "Goal succeeded");
}
}
该工作线程每秒处理斐波那契数列的一个序列数,对每一步都发布一个反馈更新。当它完成处理时,将``goal_handle``标记为成功并退出。
现在我们有一个完全功能的动作服务器。让我们构建并运行它。
2.2 编译动作服务器
在前一节中,我们已经放置了动作服务器的代码。为了使其编译和运行,我们还需要进行一些额外的操作。
首先,我们需要设置CMakeLists.txt以便编译动作服务器。打开``action_tutorials_cpp/CMakeLists.txt``文件,在``find_package``调用之后添加以下内容:
add_library(action_server SHARED
src/fibonacci_action_server.cpp)
target_include_directories(action_server PRIVATE
$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>
$<INSTALL_INTERFACE:include>)
target_compile_definitions(action_server
PRIVATE "ACTION_TUTORIALS_CPP_BUILDING_DLL")
ament_target_dependencies(action_server
"action_tutorials_interfaces"
"rclcpp"
"rclcpp_action"
"rclcpp_components")
rclcpp_components_register_node(action_server PLUGIN "action_tutorials_cpp::FibonacciActionServer" EXECUTABLE fibonacci_action_server)
install(TARGETS
action_server
ARCHIVE DESTINATION lib
LIBRARY DESTINATION lib
RUNTIME DESTINATION bin)
现在我们可以编译该软件包。进入``ros2_ws``的顶级目录,运行以下命令:
colcon build
这将编译整个工作空间,包括``action_tutorials_cpp``软件包中的``fibonacci_action_server``。
2.3 运行动作服务器
现在我们已经构建了动作服务器,可以运行它了。源激活我们刚刚构建的工作空间(ros2_ws
),并尝试运行动作服务器:
ros2 run action_tutorials_cpp fibonacci_action_server
3 编写动作客户端
3.1 编写动作客户端代码
打开 action_tutorials_cpp/src/fibonacci_action_client.cpp
,并将以下代码放入其中:
#include <functional>
#include <future>
#include <memory>
#include <string>
#include <sstream>
#include "action_tutorials_interfaces/action/fibonacci.hpp"
#include "rclcpp/rclcpp.hpp"
#include "rclcpp_action/rclcpp_action.hpp"
#include "rclcpp_components/register_node_macro.hpp"
namespace action_tutorials_cpp
{
class FibonacciActionClient : public rclcpp::Node
{
public:
using Fibonacci = action_tutorials_interfaces::action::Fibonacci;
using GoalHandleFibonacci = rclcpp_action::ClientGoalHandle<Fibonacci>;
explicit FibonacciActionClient(const rclcpp::NodeOptions & options)
: Node("fibonacci_action_client", options)
{
this->client_ptr_ = rclcpp_action::create_client<Fibonacci>(
this,
"fibonacci");
this->timer_ = this->create_wall_timer(
std::chrono::milliseconds(500),
std::bind(&FibonacciActionClient::send_goal, this));
}
void send_goal()
{
using namespace std::placeholders;
this->timer_->cancel();
if (!this->client_ptr_->wait_for_action_server()) {
RCLCPP_ERROR(this->get_logger(), "Action server not available after waiting");
rclcpp::shutdown();
}
auto goal_msg = Fibonacci::Goal();
goal_msg.order = 10;
RCLCPP_INFO(this->get_logger(), "Sending goal");
auto send_goal_options = rclcpp_action::Client<Fibonacci>::SendGoalOptions();
send_goal_options.goal_response_callback =
std::bind(&FibonacciActionClient::goal_response_callback, this, _1);
send_goal_options.feedback_callback =
std::bind(&FibonacciActionClient::feedback_callback, this, _1, _2);
send_goal_options.result_callback =
std::bind(&FibonacciActionClient::result_callback, this, _1);
this->client_ptr_->async_send_goal(goal_msg, send_goal_options);
}
private:
rclcpp_action::Client<Fibonacci>::SharedPtr client_ptr_;
rclcpp::TimerBase::SharedPtr timer_;
void goal_response_callback(const GoalHandleFibonacci::SharedPtr & goal_handle)
{
if (!goal_handle) {
RCLCPP_ERROR(this->get_logger(), "Goal was rejected by server");
} else {
RCLCPP_INFO(this->get_logger(), "Goal accepted by server, waiting for result");
}
}
void feedback_callback(
GoalHandleFibonacci::SharedPtr,
const std::shared_ptr<const Fibonacci::Feedback> feedback)
{
std::stringstream ss;
ss << "Next number in sequence received: ";
for (auto number : feedback->partial_sequence) {
ss << number << " ";
}
RCLCPP_INFO(this->get_logger(), ss.str().c_str());
}
void result_callback(const GoalHandleFibonacci::WrappedResult & result)
{
switch (result.code) {
case rclcpp_action::ResultCode::SUCCEEDED:
break;
case rclcpp_action::ResultCode::ABORTED:
RCLCPP_ERROR(this->get_logger(), "Goal was aborted");
return;
case rclcpp_action::ResultCode::CANCELED:
RCLCPP_ERROR(this->get_logger(), "Goal was canceled");
return;
default:
RCLCPP_ERROR(this->get_logger(), "Unknown result code");
return;
}
std::stringstream ss;
ss << "Result received: ";
for (auto number : result.result->sequence) {
ss << number << " ";
}
RCLCPP_INFO(this->get_logger(), ss.str().c_str());
rclcpp::shutdown();
}
}; // class FibonacciActionClient
} // namespace action_tutorials_cpp
RCLCPP_COMPONENTS_REGISTER_NODE(action_tutorials_cpp::FibonacciActionClient)
前几行包含了我们编译所需的所有头文件。
接下来,我们创建一个派生自 rclcpp::Node
的类:
class FibonacciActionClient : public rclcpp::Node
FibonacciActionClient
类的构造函数将节点名称初始化为 fibonacci_action_client
:
explicit FibonacciActionClient(const rclcpp::NodeOptions & options)
: Node("fibonacci_action_client", options)
构造函数还实例化了一个新的动作客户端:
this->client_ptr_ = rclcpp_action::create_client<Fibonacci>(
this,
"fibonacci");
动作客户端需要三样东西:
模板化的动作类型名称:
Fibonacci
。一个用于添加动作客户端的ROS 2节点:
this
。动作名称:
'fibonacci'
。
我们还实例化了一个ROS定时器,它将触发对``send_goal``的唯一调用:
this->timer_ = this->create_wall_timer(
std::chrono::milliseconds(500),
std::bind(&FibonacciActionClient::send_goal, this));
当定时器到期时,它将调用``send_goal``:
void send_goal()
{
using namespace std::placeholders;
this->timer_->cancel();
if (!this->client_ptr_->wait_for_action_server()) {
RCLCPP_ERROR(this->get_logger(), "Action server not available after waiting");
rclcpp::shutdown();
}
auto goal_msg = Fibonacci::Goal();
goal_msg.order = 10;
RCLCPP_INFO(this->get_logger(), "Sending goal");
auto send_goal_options = rclcpp_action::Client<Fibonacci>::SendGoalOptions();
send_goal_options.goal_response_callback =
std::bind(&FibonacciActionClient::goal_response_callback, this, _1);
send_goal_options.feedback_callback =
std::bind(&FibonacciActionClient::feedback_callback, this, _1, _2);
send_goal_options.result_callback =
std::bind(&FibonacciActionClient::result_callback, this, _1);
this->client_ptr_->async_send_goal(goal_msg, send_goal_options);
}
此函数执行以下操作:
取消定时器的操作(因此只调用一次)。
等待动作服务器启动。
实例化一个新的
Fibonacci::Goal
。设置响应、反馈和结果的回调函数。
将目标发送到服务器。
当服务器接收并接受目标后,它将向客户端发送响应。这个响应由 goal_response_callback
处理:
void goal_response_callback(const GoalHandleFibonacci::SharedPtr & goal_handle)
{
if (!goal_handle) {
RCLCPP_ERROR(this->get_logger(), "Goal was rejected by server");
} else {
RCLCPP_INFO(this->get_logger(), "Goal accepted by server, waiting for result");
}
}
假设服务器接受了目标,它将开始处理。任何对客户端的反馈将由 feedback_callback
处理:
void feedback_callback(
GoalHandleFibonacci::SharedPtr,
const std::shared_ptr<const Fibonacci::Feedback> feedback)
{
std::stringstream ss;
ss << "Next number in sequence received: ";
for (auto number : feedback->partial_sequence) {
ss << number << " ";
}
RCLCPP_INFO(this->get_logger(), ss.str().c_str());
}
当服务器处理完成后,将向客户端返回结果。结果由 result_callback
处理:
void result_callback(const GoalHandleFibonacci::WrappedResult & result)
{
switch (result.code) {
case rclcpp_action::ResultCode::SUCCEEDED:
break;
case rclcpp_action::ResultCode::ABORTED:
RCLCPP_ERROR(this->get_logger(), "Goal was aborted");
return;
case rclcpp_action::ResultCode::CANCELED:
RCLCPP_ERROR(this->get_logger(), "Goal was canceled");
return;
default:
RCLCPP_ERROR(this->get_logger(), "Unknown result code");
return;
}
std::stringstream ss;
ss << "Result received: ";
for (auto number : result.result->sequence) {
ss << number << " ";
}
RCLCPP_INFO(this->get_logger(), ss.str().c_str());
rclcpp::shutdown();
}
}; // class FibonacciActionClient
我们现在拥有一个完全运行的动作客户端。让我们来构建和运行它吧。
3.2 编译动作客户端
在前一节中,我们已经放置了动作客户端的代码。为了使其编译和运行,我们需要进行一些额外的操作。
首先,我们需要设置 CMakeLists.txt,以便编译动作客户端。打开 action_tutorials_cpp/CMakeLists.txt
,在 find_package
调用之后添加以下内容:
add_library(action_client SHARED
src/fibonacci_action_client.cpp)
target_include_directories(action_client PRIVATE
$<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/include>
$<INSTALL_INTERFACE:include>)
target_compile_definitions(action_client
PRIVATE "ACTION_TUTORIALS_CPP_BUILDING_DLL")
ament_target_dependencies(action_client
"action_tutorials_interfaces"
"rclcpp"
"rclcpp_action"
"rclcpp_components")
rclcpp_components_register_node(action_client PLUGIN "action_tutorials_cpp::FibonacciActionClient" EXECUTABLE fibonacci_action_client)
install(TARGETS
action_client
ARCHIVE DESTINATION lib
LIBRARY DESTINATION lib
RUNTIME DESTINATION bin)
现在我们可以编译该软件包。进入``ros2_ws``的顶级目录,运行以下命令:
colcon build
这将编译整个工作空间,包括 action_tutorials_cpp
包中的 fibonacci_action_client
。
3.3 运行动作客户端
现在我们已经构建了动作客户端,可以运行它了。首先确保在单独的终端中运行了一个动作服务器。现在,源代码工作空间我们刚刚构建的(ros2_ws
),然后尝试运行动作客户端:
ros2 run action_tutorials_cpp fibonacci_action_client
您应该看到有关目标被接受、反馈被打印和最终结果的日志消息。